VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/Xts.c
blob: 99999f1184f8612aaf824f55591cc045afd8de5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2025 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

/* If native 64-bit data types are not available, define TC_NO_COMPILER_INT64.

For big-endian platforms define BYTE_ORDER as BIG_ENDIAN. */


#ifdef TC_MINIMIZE_CODE_SIZE
//	Preboot/boot version
#	ifndef TC_NO_COMPILER_INT64
#		define TC_NO_COMPILER_INT64
#	endif
#	pragma optimize ("tl", on)
#endif

#ifdef TC_NO_COMPILER_INT64
#	include <memory.h>
#endif

#ifndef TC_NO_COMPILER_INT64
#include "cpu.h"
#include "misc.h"
#endif
#include "Xts.h"


#ifndef TC_NO_COMPILER_INT64

// length: number of bytes to encrypt; may be larger than one data unit and must be divisible by the cipher block size
// ks: the primary key schedule
// ks2: the secondary key schedule
// startDataUnitNo: The sequential number of the data unit with which the buffer starts.
// startCipherBlockNo: The sequential number of the first plaintext block to encrypt inside the data unit startDataUnitNo.
//                     When encrypting the data unit from its first block, startCipherBlockNo is 0.
//                     The startCipherBlockNo value applies only to the first data unit in the buffer; each successive
//                     data unit is encrypted from its first block. The start of the buffer does not have to be
//                     aligned with the start of a data unit. If it is aligned, startCipherBlockNo must be 0; if it
//                     is not aligned, startCipherBlockNo must reflect the misalignment accordingly.
void EncryptBufferXTS (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
    #ifndef WOLFCRYPT_BACKEND
        if (CipherSupportsIntraDataUnitParallelization (cipher))
		EncryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
	else
		EncryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
    #else
        xts_encrypt(buffer, buffer, length, startDataUnitNo, ks);
    #endif
}

#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)

#define XorBlocks(result,ptr,len,start,end) \
    while (len >= 2) \
    { \
        __m128i xmm1 = _mm_loadu_si128((const __m128i*) ptr); \
        __m128i xmm2 = _mm_loadu_si128((__m128i*)result); \
        __m128i xmm3 = _mm_loadu_si128((const __m128i*) (ptr + 2)); \
        __m128i xmm4 = _mm_loadu_si128((__m128i*)(result + 2)); \
		 \
        _mm_storeu_si128((__m128i*)result, _mm_xor_si128(xmm1, xmm2)); \
        _mm_storeu_si128((__m128i*)(result + 2), _mm_xor_si128(xmm3, xmm4)); \
        ptr+= 4; \
        result+= 4; \
        len -= 2; \
    } \
	 \
    if (len) \
    { \
        __m128i xmm1 = _mm_loadu_si128((const __m128i*)ptr); \
        __m128i xmm2 = _mm_loadu_si128((__m128i*)result); \
		 \
        _mm_storeu_si128((__m128i*)result, _mm_xor_si128(xmm1, xmm2)); \
        ptr+= 2; \
        result+= 2; \
    } \
	len = end - start;

#endif

// Optimized for encryption algorithms supporting intra-data-unit parallelization
static void EncryptBufferXTSParallel (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	unsigned __int8 finalCarry;
	unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE];
	CRYPTOPP_ALIGN_DATA(16) unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
	unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
	unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;
	unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
	unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
	unsigned __int64 *dataUnitBufPtr;
	unsigned int startBlock = startCipherBlockNo, endBlock, block, countBlock;
	TC_LARGEST_COMPILER_UINT remainingBlocks, dataUnitNo;

	/* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the
	finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block
	number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented
	as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if
	the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is
	derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */

	// Convert the 64-bit data unit number into a little-endian 16-byte array.
	// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
	dataUnitNo = startDataUnitNo->Value;
	*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	*((unsigned __int64 *) byteBufUnitNo + 1) = 0;

	if (length % BYTES_PER_XTS_BLOCK)
		TC_THROW_FATAL_EXCEPTION;

	remainingBlocks = length / BYTES_PER_XTS_BLOCK;

	// Process all blocks in the buffer
	while (remainingBlocks > 0)
	{
		if (remainingBlocks < BLOCKS_PER_XTS_DATA_UNIT)
			endBlock = startBlock + (unsigned int) remainingBlocks;
		else
			endBlock = BLOCKS_PER_XTS_DATA_UNIT;
		countBlock = endBlock - startBlock;

		whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;
		whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;

		// Encrypt the data unit number using the secondary key (in order to generate the first
		// whitening value for this data unit)
		*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
		*(whiteningValuePtr64 + 1) = 0;
		EncipherBlock (cipher, whiteningValue, ks2);

		// Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
		// whitening values are stored in memory as a sequence of 64-bit integers.
		for (block = 0; block < endBlock; block++)
		{
			if (block >= startBlock)
			{
				*whiteningValuesPtr64++ = *whiteningValuePtr64++;
				*whiteningValuesPtr64++ = *whiteningValuePtr64;
			}
			else
				whiteningValuePtr64++;

			// Derive the next whitening value

#if BYTE_ORDER == LITTLE_ENDIAN

			// Little-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x8000000000000000) ?
				135 : 0;

			*whiteningValuePtr64-- <<= 1;

			if (*whiteningValuePtr64 & 0x8000000000000000)
				*(whiteningValuePtr64 + 1) |= 1;

			*whiteningValuePtr64 <<= 1;
#else

			// Big-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x80) ?
				135 : 0;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);

			whiteningValuePtr64--;

			if (*whiteningValuePtr64 & 0x80)
				*(whiteningValuePtr64 + 1) |= 0x0100000000000000;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif

			whiteningValue[0] ^= finalCarry;
		}

		dataUnitBufPtr = bufPtr;
		whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;

		// Encrypt all blocks in this data unit
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
		XorBlocks (bufPtr, whiteningValuesPtr64, countBlock, startBlock, endBlock);
#else
		for (block = 0; block < countBlock; block++)
		{
			// Pre-whitening
			*bufPtr++ ^= *whiteningValuesPtr64++;
			*bufPtr++ ^= *whiteningValuesPtr64++;
		}
#endif
		// Actual encryption
		EncipherBlocks (cipher, dataUnitBufPtr, ks, countBlock);

		bufPtr = dataUnitBufPtr;
		whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;

#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
		XorBlocks (bufPtr, whiteningValuesPtr64, countBlock, startBlock, endBlock);
#else
		for (block = 0; block < countBlock; block++)
		{
			// Post-whitening
			*bufPtr++ ^= *whiteningValuesPtr64++;
			*bufPtr++ ^= *whiteningValuesPtr64++;
		}
#endif

		remainingBlocks -= countBlock;
		startBlock = 0;
		dataUnitNo++;
		*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	}

	FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
	FAST_ERASE64 (whiteningValues, sizeof (whiteningValues));
}


// Optimized for encryption algorithms not supporting intra-data-unit parallelization
static void EncryptBufferXTSNonParallel (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	unsigned __int8 finalCarry;
	CRYPTOPP_ALIGN_DATA(16) unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
	unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
	unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
	unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
	unsigned int startBlock = startCipherBlockNo, endBlock, block;
	TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;

	/* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the
	finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block
	number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented
	as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if
	the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is
	derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */

	// Convert the 64-bit data unit number into a little-endian 16-byte array.
	// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
	dataUnitNo = startDataUnitNo->Value;
	*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	*((unsigned __int64 *) byteBufUnitNo + 1) = 0;

	if (length % BYTES_PER_XTS_BLOCK)
		TC_THROW_FATAL_EXCEPTION;

	blockCount = length / BYTES_PER_XTS_BLOCK;

	// Process all blocks in the buffer
	while (blockCount > 0)
	{
		if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
			endBlock = startBlock + (unsigned int) blockCount;
		else
			endBlock = BLOCKS_PER_XTS_DATA_UNIT;

		whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;

		// Encrypt the data unit number using the secondary key (in order to generate the first
		// whitening value for this data unit)
		*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
		*(whiteningValuePtr64 + 1) = 0;
		EncipherBlock (cipher, whiteningValue, ks2);

		// Generate (and apply) subsequent whitening values for blocks in this data unit and
		// encrypt all relevant blocks in this data unit
		for (block = 0; block < endBlock; block++)
		{
			if (block >= startBlock)
			{
				// Pre-whitening
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
				__m128i xmm1 = _mm_loadu_si128((const __m128i*)whiteningValuePtr64);
				__m128i xmm2 = _mm_loadu_si128((__m128i*)bufPtr);

				_mm_storeu_si128((__m128i*)bufPtr, _mm_xor_si128(xmm1, xmm2));
#else
				*bufPtr++ ^= *whiteningValuePtr64++;
				*bufPtr-- ^= *whiteningValuePtr64--;
#endif
				// Actual encryption
				EncipherBlock (cipher, bufPtr, ks);

				// Post-whitening
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
				xmm1 = _mm_loadu_si128((const __m128i*)whiteningValuePtr64);
				xmm2 = _mm_loadu_si128((__m128i*)bufPtr);

				_mm_storeu_si128((__m128i*)bufPtr, _mm_xor_si128(xmm1, xmm2));
				
				whiteningValuePtr64++;
				bufPtr += 2;
#else
				*bufPtr++ ^= *whiteningValuePtr64++;
				*bufPtr++ ^= *whiteningValuePtr64;
#endif
			}
			else
				whiteningValuePtr64++;

			// Derive the next whitening value

#if BYTE_ORDER == LITTLE_ENDIAN

			// Little-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x8000000000000000) ?
				135 : 0;

			*whiteningValuePtr64-- <<= 1;

			if (*whiteningValuePtr64 & 0x8000000000000000)
				*(whiteningValuePtr64 + 1) |= 1;

			*whiteningValuePtr64 <<= 1;
#else

			// Big-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x80) ?
				135 : 0;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);

			whiteningValuePtr64--;

			if (*whiteningValuePtr64 & 0x80)
				*(whiteningValuePtr64 + 1) |= 0x0100000000000000;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif

			whiteningValue[0] ^= finalCarry;
		}

		blockCount -= endBlock - startBlock;
		startBlock = 0;
		dataUnitNo++;
		*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	}

	FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
}


// For descriptions of the input parameters, see EncryptBufferXTS().
void DecryptBufferXTS (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
    #ifndef WOLFCRYPT_BACKEND
	if (CipherSupportsIntraDataUnitParallelization (cipher))
		DecryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
	else
		DecryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
    #else
        xts_decrypt(buffer, buffer, length, startDataUnitNo, ks);
    #endif
}


// Optimized for encryption algorithms supporting intra-data-unit parallelization
static void DecryptBufferXTSParallel (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	unsigned __int8 finalCarry;
	unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE];
	unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
	unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
	unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;
	unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
	unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
	unsigned __int64 *dataUnitBufPtr;
	unsigned int startBlock = startCipherBlockNo, endBlock, block, countBlock;
	TC_LARGEST_COMPILER_UINT remainingBlocks, dataUnitNo;

	// Convert the 64-bit data unit number into a little-endian 16-byte array.
	// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
	dataUnitNo = startDataUnitNo->Value;
	*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	*((unsigned __int64 *) byteBufUnitNo + 1) = 0;

	if (length % BYTES_PER_XTS_BLOCK)
		TC_THROW_FATAL_EXCEPTION;

	remainingBlocks = length / BYTES_PER_XTS_BLOCK;

	// Process all blocks in the buffer
	while (remainingBlocks > 0)
	{
		if (remainingBlocks < BLOCKS_PER_XTS_DATA_UNIT)
			endBlock = startBlock + (unsigned int) remainingBlocks;
		else
			endBlock = BLOCKS_PER_XTS_DATA_UNIT;
		countBlock = endBlock - startBlock;

		whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;
		whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;

		// Encrypt the data unit number using the secondary key (in order to generate the first
		// whitening value for this data unit)
		*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
		*(whiteningValuePtr64 + 1) = 0;
		EncipherBlock (cipher, whiteningValue, ks2);

		// Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
		// whitening values are stored in memory as a sequence of 64-bit integers.
		for (block = 0; block < endBlock; block++)
		{
			if (block >= startBlock)
			{
				*whiteningValuesPtr64++ = *whiteningValuePtr64++;
				*whiteningValuesPtr64++ = *whiteningValuePtr64;
			}
			else
				whiteningValuePtr64++;

			// Derive the next whitening value

#if BYTE_ORDER == LITTLE_ENDIAN

			// Little-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x8000000000000000) ?
				135 : 0;

			*whiteningValuePtr64-- <<= 1;

			if (*whiteningValuePtr64 & 0x8000000000000000)
				*(whiteningValuePtr64 + 1) |= 1;

			*whiteningValuePtr64 <<= 1;

#else
			// Big-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x80) ?
				135 : 0;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);

			whiteningValuePtr64--;

			if (*whiteningValuePtr64 & 0x80)
				*(whiteningValuePtr64 + 1) |= 0x0100000000000000;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif

			whiteningValue[0] ^= finalCarry;
		}

		dataUnitBufPtr = bufPtr;
		whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;

		// Decrypt blocks in this data unit
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
		XorBlocks (bufPtr, whiteningValuesPtr64, countBlock, startBlock, endBlock);
#else
		for (block = 0; block < countBlock; block++)
		{
			*bufPtr++ ^= *whiteningValuesPtr64++;
			*bufPtr++ ^= *whiteningValuesPtr64++;
		}
#endif
		DecipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock);

		bufPtr = dataUnitBufPtr;
		whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;

#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
		XorBlocks (bufPtr, whiteningValuesPtr64, countBlock, startBlock, endBlock);
#else
		for (block = 0; block < countBlock; block++)
		{
			*bufPtr++ ^= *whiteningValuesPtr64++;
			*bufPtr++ ^= *whiteningValuesPtr64++;
		}
#endif
		remainingBlocks -= countBlock;
		startBlock = 0;
		dataUnitNo++;

		*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	}

	FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
	FAST_ERASE64 (whiteningValues, sizeof (whiteningValues));
}


// Optimized for encryption algorithms not supporting intra-data-unit parallelization
static void DecryptBufferXTSNonParallel (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	unsigned __int8 finalCarry;
	unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
	unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
	unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
	unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
	unsigned int startBlock = startCipherBlockNo, endBlock, block;
	TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;

	// Convert the 64-bit data unit number into a little-endian 16-byte array.
	// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
	dataUnitNo = startDataUnitNo->Value;
	*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	*((unsigned __int64 *) byteBufUnitNo + 1) = 0;

	if (length % BYTES_PER_XTS_BLOCK)
		TC_THROW_FATAL_EXCEPTION;

	blockCount = length / BYTES_PER_XTS_BLOCK;

	// Process all blocks in the buffer
	while (blockCount > 0)
	{
		if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
			endBlock = startBlock + (unsigned int) blockCount;
		else
			endBlock = BLOCKS_PER_XTS_DATA_UNIT;

		whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;

		// Encrypt the data unit number using the secondary key (in order to generate the first
		// whitening value for this data unit)
		*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
		*(whiteningValuePtr64 + 1) = 0;
		EncipherBlock (cipher, whiteningValue, ks2);

		// Generate (and apply) subsequent whitening values for blocks in this data unit and
		// decrypt all relevant blocks in this data unit
		for (block = 0; block < endBlock; block++)
		{
			if (block >= startBlock)
			{
				// Post-whitening
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
				__m128i xmm1 = _mm_loadu_si128((const __m128i*)whiteningValuePtr64);
				__m128i xmm2 = _mm_loadu_si128((__m128i*)bufPtr);

				_mm_storeu_si128((__m128i*)bufPtr, _mm_xor_si128(xmm1, xmm2));
#else
				*bufPtr++ ^= *whiteningValuePtr64++;
				*bufPtr-- ^= *whiteningValuePtr64--;
#endif
				// Actual decryption
				DecipherBlock (cipher, bufPtr, ks);

				// Pre-whitening
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
				xmm1 = _mm_loadu_si128((const __m128i*)whiteningValuePtr64);
				xmm2 = _mm_loadu_si128((__m128i*)bufPtr);

				_mm_storeu_si128((__m128i*)bufPtr, _mm_xor_si128(xmm1, xmm2));
				
				whiteningValuePtr64++;
				bufPtr += 2;
#else
				*bufPtr++ ^= *whiteningValuePtr64++;
				*bufPtr++ ^= *whiteningValuePtr64;
#endif
			}
			else
				whiteningValuePtr64++;

			// Derive the next whitening value

#if BYTE_ORDER == LITTLE_ENDIAN

			// Little-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x8000000000000000) ?
				135 : 0;

			*whiteningValuePtr64-- <<= 1;

			if (*whiteningValuePtr64 & 0x8000000000000000)
				*(whiteningValuePtr64 + 1) |= 1;

			*whiteningValuePtr64 <<= 1;

#else
			// Big-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x80) ?
				135 : 0;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);

			whiteningValuePtr64--;

			if (*whiteningValuePtr64 & 0x80)
				*(whiteningValuePtr64 + 1) |= 0x0100000000000000;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif

			whiteningValue[0] ^= finalCarry;
		}

		blockCount -= endBlock - startBlock;
		startBlock = 0;
		dataUnitNo++;
		*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	}

	FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
}


#else	// TC_NO_COMPILER_INT64

/* ---- The following code is to be used only when native 64-bit data types are not available. ---- */

#if BYTE_ORDER == BIG_ENDIAN
#error The TC_NO_COMPILER_INT64 version of the XTS code is not compatible with big-endian platforms
#endif


// Converts a 64-bit unsigned integer (passed as two 32-bit integers for compatibility with non-64-bit
// environments/platforms) into a little-endian 16-byte array.
static void Uint64ToLE16ByteArray (unsigned __int8 *byteBuf, unsigned __int32 highInt32, unsigned __int32 lowInt32)
{
	unsigned __int32 *bufPtr32 = (unsigned __int32 *) byteBuf;

	*bufPtr32++ = lowInt32;
	*bufPtr32++ = highInt32;

	// We're converting a 64-bit number into a little-endian 16-byte array so we can zero the last 8 bytes
	*bufPtr32++ = 0;
	*bufPtr32 = 0;
}


// Encrypts or decrypts all blocks in the buffer in XTS mode. For descriptions of the input parameters,
// see the 64-bit version of EncryptBufferXTS().
static void EncryptDecryptBufferXTS32 (const unsigned __int8 *buffer,
							TC_LARGEST_COMPILER_UINT length,
							const UINT64_STRUCT *startDataUnitNo,
							unsigned int startBlock,
							unsigned __int8 *ks,
							unsigned __int8 *ks2,
							int cipher,
							BOOL decryption)
{
	TC_LARGEST_COMPILER_UINT blockCount;
	UINT64_STRUCT dataUnitNo;
	unsigned int block;
	unsigned int endBlock;
	unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
	unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
	unsigned __int32 *bufPtr32 = (unsigned __int32 *) buffer;
	unsigned __int32 *whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;
	unsigned __int8 finalCarry;
	unsigned __int32 *const finalDwordWhiteningValuePtr = whiteningValuePtr32 + sizeof (whiteningValue) / sizeof (*whiteningValuePtr32) - 1;

	// Store the 64-bit data unit number in a way compatible with non-64-bit environments/platforms
	dataUnitNo.HighPart = startDataUnitNo->HighPart;
	dataUnitNo.LowPart = startDataUnitNo->LowPart;

	blockCount = length / BYTES_PER_XTS_BLOCK;

	// Convert the 64-bit data unit number into a little-endian 16-byte array.
	// (Passed as two 32-bit integers for compatibility with non-64-bit environments/platforms.)
	Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart);

	// Generate whitening values for all blocks in the buffer
	while (blockCount > 0)
	{
		if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
			endBlock = startBlock + (unsigned int) blockCount;
		else
			endBlock = BLOCKS_PER_XTS_DATA_UNIT;

		// Encrypt the data unit number using the secondary key (in order to generate the first
		// whitening value for this data unit)
		memcpy (whiteningValue, byteBufUnitNo, BYTES_PER_XTS_BLOCK);
		EncipherBlock (cipher, whiteningValue, ks2);

		// Generate (and apply) subsequent whitening values for blocks in this data unit and
		// encrypt/decrypt all relevant blocks in this data unit
		for (block = 0; block < endBlock; block++)
		{
			if (block >= startBlock)
			{
				whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;

				// Whitening
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32 ^= *whiteningValuePtr32;

				bufPtr32 -= BYTES_PER_XTS_BLOCK / sizeof (*bufPtr32) - 1;

				// Actual encryption/decryption
				if (decryption)
					DecipherBlock (cipher, bufPtr32, ks);
				else
					EncipherBlock (cipher, bufPtr32, ks);

				whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;

				// Whitening
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32++ ^= *whiteningValuePtr32;
			}

			// Derive the next whitening value

			finalCarry = 0;

			for (whiteningValuePtr32 = finalDwordWhiteningValuePtr;
				whiteningValuePtr32 >= (unsigned __int32 *) whiteningValue;
				whiteningValuePtr32--)
			{
				if (*whiteningValuePtr32 & 0x80000000)	// If the following shift results in a carry
				{
					if (whiteningValuePtr32 != finalDwordWhiteningValuePtr)	// If not processing the highest double word
					{
						// A regular carry
						*(whiteningValuePtr32 + 1) |= 1;
					}
					else
					{
						// The highest byte shift will result in a carry
						finalCarry = 135;
					}
				}

				*whiteningValuePtr32 <<= 1;
			}

			whiteningValue[0] ^= finalCarry;
		}

		blockCount -= endBlock - startBlock;
		startBlock = 0;

		// Increase the data unit number by one
		if (!++dataUnitNo.LowPart)
		{
			dataUnitNo.HighPart++;
		}

		// Convert the 64-bit data unit number into a little-endian 16-byte array.
		Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart);
	}

	FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
}


// For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS() above.
void EncryptBufferXTS (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	// Encrypt all plaintext blocks in the buffer
	EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, FALSE);
}


// For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS().
void DecryptBufferXTS (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	// Decrypt all ciphertext blocks in the buffer
	EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, TRUE);
}

#endif	// TC_NO_COMPILER_INT64