VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/Aescrypt.c
blob: 7348e2cf340008820f837b08f9ccd2a22d53d7b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/*
 ---------------------------------------------------------------------------
 Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software is allowed (with or without
 changes) provided that:

  1. source code distributions include the above copyright notice, this
     list of conditions and the following disclaimer;

  2. binary distributions include the above copyright notice, this list
     of conditions and the following disclaimer in their documentation;

  3. the name of the copyright holder is not used to endorse products
     built using this software without specific written permission.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 20/12/2007
*/

#include "Aesopt.h"
#include "Aestab.h"

#if defined(__cplusplus)
extern "C"
{
#endif

#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
#define so(y,x,c)   word_out(y, c, s(x,c))

#if defined(ARRAYS)
#define locals(y,x)     x[4],y[4]
#else
#define locals(y,x)     x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
#endif

#define l_copy(y, x)    s(y,0) = s(x,0); s(y,1) = s(x,1); \
                        s(y,2) = s(x,2); s(y,3) = s(x,3);
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
#define state_out(y,x)  so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)

#if ( FUNCS_IN_C & ENCRYPTION_IN_C )

/* Visual C++ .Net v7.1 provides the fastest encryption code when using
   Pentium optimiation with small code but this is poor for decryption
   so we need to control this with the following VC++ pragmas
*/

#if defined( _MSC_VER ) && !defined( _WIN64 )
#pragma optimize( "s", on )
#endif

/* Given the column (c) of the output state variable, the following
   macros give the input state variables which are needed in its
   computation for each row (r) of the state. All the alternative
   macros give the same end values but expand into different ways
   of calculating these values.  In particular the complex macro
   used for dynamically variable block sizes is designed to expand
   to a compile time constant whenever possible but will expand to
   conditional clauses on some branches (I am grateful to Frank
   Yellin for this construction)
*/

#define fwd_var(x,r,c)\
 ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
 : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
 : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
 :          ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))

#if defined(FT4_SET)
#undef  dec_fmvars
#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
#elif defined(FT1_SET)
#undef  dec_fmvars
#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
#else
#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
#endif

#if defined(FL4_SET)
#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
#elif defined(FL1_SET)
#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
#else
#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
#endif

AES_RETURN VC_CDECL aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
{   uint_32t         locals(b0, b1);
    const uint_32t   *kp;
#if defined( dec_fmvars )
    dec_fmvars; /* declare variables for fwd_mcol() if needed */
#endif

#if defined( AES_ERR_CHK )
    if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
        return EXIT_FAILURE;
#endif

    kp = cx->ks;
    state_in(b0, in, kp);

#if (ENC_UNROLL == FULL)

    switch(cx->inf.b[0])
    {
    case 14 * 16:
        round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
        kp += 2 * N_COLS;
    case 12 * 16:
        round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
        kp += 2 * N_COLS;
    case 10 * 16:
        round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
        round(fwd_rnd,  b1, b0, kp + 3 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 4 * N_COLS);
        round(fwd_rnd,  b1, b0, kp + 5 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 6 * N_COLS);
        round(fwd_rnd,  b1, b0, kp + 7 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 8 * N_COLS);
        round(fwd_rnd,  b1, b0, kp + 9 * N_COLS);
        round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
    }

#else

#if (ENC_UNROLL == PARTIAL)
    {   uint_32t    rnd;
        for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
        {
            kp += N_COLS;
            round(fwd_rnd, b1, b0, kp);
            kp += N_COLS;
            round(fwd_rnd, b0, b1, kp);
        }
        kp += N_COLS;
        round(fwd_rnd,  b1, b0, kp);
#else
    {   uint_32t    rnd;
        for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
        {
            kp += N_COLS;
            round(fwd_rnd, b1, b0, kp);
            l_copy(b0, b1);
        }
#endif
        kp += N_COLS;
        round(fwd_lrnd, b0, b1, kp);
    }
#endif

    state_out(out, b0);

#if defined( AES_ERR_CHK )
    return EXIT_SUCCESS;
#endif
}

#endif

#if ( FUNCS_IN_C & DECRYPTION_IN_C)

/* Visual C++ .Net v7.1 provides the fastest encryption code when using
   Pentium optimiation with small code but this is poor for decryption
   so we need to control this with the following VC++ pragmas
*/

#if defined( _MSC_VER ) && !defined( _WIN64 )
#pragma optimize( "t", on )
#endif

/* Given the column (c) of the output state variable, the following
   macros give the input state variables which are needed in its
   computation for each row (r) of the state. All the alternative
   macros give the same end values but expand into different ways
   of calculating these values.  In particular the complex macro
   used for dynamically variable block sizes is designed to expand
   to a compile time constant whenever possible but will expand to
   conditional clauses on some branches (I am grateful to Frank
   Yellin for this construction)
*/

#define inv_var(x,r,c)\
 ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
 : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
 : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
 :          ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))

#if defined(IT4_SET)
#undef  dec_imvars
#define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
#elif defined(IT1_SET)
#undef  dec_imvars
#define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
#else
#define inv_rnd(y,x,k,c)    (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
#endif

#if defined(IL4_SET)
#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
#elif defined(IL1_SET)
#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
#else
#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
#endif

/* This code can work with the decryption key schedule in the   */
/* order that is used for encrytpion (where the 1st decryption  */
/* round key is at the high end ot the schedule) or with a key  */
/* schedule that has been reversed to put the 1st decryption    */
/* round key at the low end of the schedule in memory (when     */
/* AES_REV_DKS is defined)                                      */

#ifdef AES_REV_DKS
#define key_ofs     0
#define rnd_key(n)  (kp + n * N_COLS)
#else
#define key_ofs     1
#define rnd_key(n)  (kp - n * N_COLS)
#endif

AES_RETURN VC_CDECL aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1])
{   uint_32t        locals(b0, b1);
#if defined( dec_imvars )
    dec_imvars; /* declare variables for inv_mcol() if needed */
#endif
    const uint_32t *kp;

#if defined( AES_ERR_CHK )
    if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
        return EXIT_FAILURE;
#endif

    kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0);
    state_in(b0, in, kp);

#if (DEC_UNROLL == FULL)

    kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2));
    switch(cx->inf.b[0])
    {
    case 14 * 16:
        round(inv_rnd,  b1, b0, rnd_key(-13));
        round(inv_rnd,  b0, b1, rnd_key(-12));
    case 12 * 16:
        round(inv_rnd,  b1, b0, rnd_key(-11));
        round(inv_rnd,  b0, b1, rnd_key(-10));
    case 10 * 16:
        round(inv_rnd,  b1, b0, rnd_key(-9));
        round(inv_rnd,  b0, b1, rnd_key(-8));
        round(inv_rnd,  b1, b0, rnd_key(-7));
        round(inv_rnd,  b0, b1, rnd_key(-6));
        round(inv_rnd,  b1, b0, rnd_key(-5));
        round(inv_rnd,  b0, b1, rnd_key(-4));
        round(inv_rnd,  b1, b0, rnd_key(-3));
        round(inv_rnd,  b0, b1, rnd_key(-2));
        round(inv_rnd,  b1, b0, rnd_key(-1));
        round(inv_lrnd, b0, b1, rnd_key( 0));
    }

#else

#if (DEC_UNROLL == PARTIAL)
    {   uint_32t    rnd;
        for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
        {
            kp = rnd_key(1);
            round(inv_rnd, b1, b0, kp);
            kp = rnd_key(1);
            round(inv_rnd, b0, b1, kp);
        }
        kp = rnd_key(1);
        round(inv_rnd, b1, b0, kp);
#else
    {   uint_32t    rnd;
        for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
        {
            kp = rnd_key(1);
            round(inv_rnd, b1, b0, kp);
            l_copy(b0, b1);
        }
#endif
        kp = rnd_key(1);
        round(inv_lrnd, b0, b1, kp);
        }
#endif

    state_out(out, b0);

#if defined( AES_ERR_CHK )
    return EXIT_SUCCESS;
#endif
}

#endif

#if defined(__cplusplus)
}
#endif