1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
|
/*
This code is written by kerukuro for cppcrypto library (http://cppcrypto.sourceforge.net/)
and released into public domain.
*/
/* Modified for VeraCrypt with speed optimization for C implementation */
#include "Sha2.h"
#include "Common/Endian.h"
#include "Crypto/cpu.h"
#include "Crypto/misc.h"
#if defined(_UEFI) || defined(CRYPTOPP_DISABLE_ASM)
#define NO_OPTIMIZED_VERSIONS
#endif
#ifndef NO_OPTIMIZED_VERSIONS
#if defined(__cplusplus)
extern "C"
{
#endif
#if CRYPTOPP_BOOL_X64
void sha512_rorx(const void* M, void* D, uint_64t l);
void sha512_sse4(const void* M, uint_64t D[8], uint_64t l);
void sha512_avx(const void* M, void* D, uint_64t l);
#endif
#if CRYPTOPP_BOOL_X64 || ((CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) && !defined (TC_MACOSX))
void VC_CDECL sha512_compress_nayuki(uint_64t state[8], const uint_8t block[128]);
#endif
#if defined(__cplusplus)
}
#endif
#endif
typedef void (*transformFn)(sha512_ctx* ctx, void* m, uint_64t num_blks);
transformFn transfunc = NULL;
static const uint_64t K[80] = {
LL(0x428a2f98d728ae22), LL(0x7137449123ef65cd), LL(0xb5c0fbcfec4d3b2f), LL(0xe9b5dba58189dbbc),
LL(0x3956c25bf348b538), LL(0x59f111f1b605d019), LL(0x923f82a4af194f9b), LL(0xab1c5ed5da6d8118),
LL(0xd807aa98a3030242), LL(0x12835b0145706fbe), LL(0x243185be4ee4b28c), LL(0x550c7dc3d5ffb4e2),
LL(0x72be5d74f27b896f), LL(0x80deb1fe3b1696b1), LL(0x9bdc06a725c71235), LL(0xc19bf174cf692694),
LL(0xe49b69c19ef14ad2), LL(0xefbe4786384f25e3), LL(0x0fc19dc68b8cd5b5), LL(0x240ca1cc77ac9c65),
LL(0x2de92c6f592b0275), LL(0x4a7484aa6ea6e483), LL(0x5cb0a9dcbd41fbd4), LL(0x76f988da831153b5),
LL(0x983e5152ee66dfab), LL(0xa831c66d2db43210), LL(0xb00327c898fb213f), LL(0xbf597fc7beef0ee4),
LL(0xc6e00bf33da88fc2), LL(0xd5a79147930aa725), LL(0x06ca6351e003826f), LL(0x142929670a0e6e70),
LL(0x27b70a8546d22ffc), LL(0x2e1b21385c26c926), LL(0x4d2c6dfc5ac42aed), LL(0x53380d139d95b3df),
LL(0x650a73548baf63de), LL(0x766a0abb3c77b2a8), LL(0x81c2c92e47edaee6), LL(0x92722c851482353b),
LL(0xa2bfe8a14cf10364), LL(0xa81a664bbc423001), LL(0xc24b8b70d0f89791), LL(0xc76c51a30654be30),
LL(0xd192e819d6ef5218), LL(0xd69906245565a910), LL(0xf40e35855771202a), LL(0x106aa07032bbd1b8),
LL(0x19a4c116b8d2d0c8), LL(0x1e376c085141ab53), LL(0x2748774cdf8eeb99), LL(0x34b0bcb5e19b48a8),
LL(0x391c0cb3c5c95a63), LL(0x4ed8aa4ae3418acb), LL(0x5b9cca4f7763e373), LL(0x682e6ff3d6b2b8a3),
LL(0x748f82ee5defb2fc), LL(0x78a5636f43172f60), LL(0x84c87814a1f0ab72), LL(0x8cc702081a6439ec),
LL(0x90befffa23631e28), LL(0xa4506cebde82bde9), LL(0xbef9a3f7b2c67915), LL(0xc67178f2e372532b),
LL(0xca273eceea26619c), LL(0xd186b8c721c0c207), LL(0xeada7dd6cde0eb1e), LL(0xf57d4f7fee6ed178),
LL(0x06f067aa72176fba), LL(0x0a637dc5a2c898a6), LL(0x113f9804bef90dae), LL(0x1b710b35131c471b),
LL(0x28db77f523047d84), LL(0x32caab7b40c72493), LL(0x3c9ebe0a15c9bebc), LL(0x431d67c49c100d4c),
LL(0x4cc5d4becb3e42b6), LL(0x597f299cfc657e2a), LL(0x5fcb6fab3ad6faec), LL(0x6c44198c4a475817)
};
#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
#define sum0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
#define sum1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
#define sigma0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
#define sigma1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
#define WU(j) (W[j & 15] += sigma1(W[(j + 14) & 15]) + W[(j + 9) & 15] + sigma0(W[(j + 1) & 15]))
#define COMPRESS_ROUND(i, j, K) \
T1 = h + sum1(e) + Ch(e, f, g) + K[i + j] + (i? WU(j): W[j]); \
T2 = sum0(a) + Maj(a, b, c); \
h = g; \
g = f; \
f = e; \
e = d + T1; \
d = c; \
c = b; \
b = a; \
a = T1 + T2;
void StdTransform(sha512_ctx* ctx, void* mp, uint_64t num_blks)
{
uint_64t blk;
for (blk = 0; blk < num_blks; blk++)
{
uint_64t W[16];
uint_64t a,b,c,d,e,f,g,h;
uint_64t T1, T2;
int i;
#if defined (TC_WINDOWS_DRIVER) && defined (DEBUG)
int j;
#endif
for (i = 0; i < 128 / 8; i++)
{
W[i] = bswap_64((((const uint_64t*)(mp))[blk * 16 + i]));
}
a = ctx->hash[0];
b = ctx->hash[1];
c = ctx->hash[2];
d = ctx->hash[3];
e = ctx->hash[4];
f = ctx->hash[5];
g = ctx->hash[6];
h = ctx->hash[7];
for (i = 0; i <= 79; i+=16)
{
#if defined (TC_WINDOWS_DRIVER) && defined (DEBUG)
for (j = 0; j < 16; j++)
{
COMPRESS_ROUND(i, j, K);
}
#else
COMPRESS_ROUND(i, 0, K);
COMPRESS_ROUND(i, 1, K);
COMPRESS_ROUND(i , 2, K);
COMPRESS_ROUND(i, 3, K);
COMPRESS_ROUND(i, 4, K);
COMPRESS_ROUND(i, 5, K);
COMPRESS_ROUND(i, 6, K);
COMPRESS_ROUND(i, 7, K);
COMPRESS_ROUND(i, 8, K);
COMPRESS_ROUND(i, 9, K);
COMPRESS_ROUND(i, 10, K);
COMPRESS_ROUND(i, 11, K);
COMPRESS_ROUND(i, 12, K);
COMPRESS_ROUND(i, 13, K);
COMPRESS_ROUND(i, 14, K);
COMPRESS_ROUND(i, 15, K);
#endif
}
ctx->hash[0] += a;
ctx->hash[1] += b;
ctx->hash[2] += c;
ctx->hash[3] += d;
ctx->hash[4] += e;
ctx->hash[5] += f;
ctx->hash[6] += g;
ctx->hash[7] += h;
}
}
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_BOOL_X64
void Avx2Transform(sha512_ctx* ctx, void* mp, uint_64t num_blks)
{
if (num_blks > 1)
sha512_rorx(mp, ctx->hash, num_blks);
else
sha512_sse4(mp, ctx->hash, num_blks);
}
void AvxTransform(sha512_ctx* ctx, void* mp, uint_64t num_blks)
{
if (num_blks > 1)
sha512_avx(mp, ctx->hash, num_blks);
else
sha512_sse4(mp, ctx->hash, num_blks);
}
void SSE4Transform(sha512_ctx* ctx, void* mp, uint_64t num_blks)
{
sha512_sse4(mp, ctx->hash, num_blks);
}
#endif
#if CRYPTOPP_BOOL_X64 || ((CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) && !defined (TC_MACOSX))
void SSE2Transform(sha512_ctx* ctx, void* mp, uint_64t num_blks)
{
uint_64t i;
for (i = 0; i < num_blks; i++)
sha512_compress_nayuki(ctx->hash, (uint_8t*)mp + i * 128);
}
#endif
#endif // NO_OPTIMIZED_VERSIONS
void sha512_begin(sha512_ctx* ctx)
{
ctx->hash[0] = LL(0x6a09e667f3bcc908);
ctx->hash[1] = LL(0xbb67ae8584caa73b);
ctx->hash[2] = LL(0x3c6ef372fe94f82b);
ctx->hash[3] = LL(0xa54ff53a5f1d36f1);
ctx->hash[4] = LL(0x510e527fade682d1);
ctx->hash[5] = LL(0x9b05688c2b3e6c1f);
ctx->hash[6] = LL(0x1f83d9abfb41bd6b);
ctx->hash[7] = LL(0x5be0cd19137e2179);
ctx->count[0] = 0;
ctx->count[1] = 0;
if (!transfunc)
{
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_BOOL_X64
if (g_isIntel&& HasSAVX2() && HasSBMI2())
transfunc = Avx2Transform;
else if (g_isIntel && HasSAVX())
{
transfunc = AvxTransform;
}
else if (HasSSE41())
{
transfunc = SSE4Transform;
}
else
#endif
#if CRYPTOPP_BOOL_X64 || ((CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) && !defined (TC_MACOSX))
#if CRYPTOPP_BOOL_X64
if (HasSSE2())
#else
if (HasSSSE3() && HasMMX())
#endif
transfunc = SSE2Transform;
else
#endif
#endif
transfunc = StdTransform;
}
}
void sha512_end(unsigned char * result, sha512_ctx* ctx)
{
int i;
uint_64t mlen, pos = ctx->count[0];
uint_8t* m = (uint_8t*) ctx->wbuf;
m[pos++] = 0x80;
if (pos > 112)
{
memset(m + pos, 0, (size_t) (128 - pos));
transfunc(ctx, m, 1);
pos = 0;
}
memset(m + pos, 0, (size_t) (128 - pos));
mlen = bswap_64(ctx->count[1]);
memcpy(m + (128 - 8), &mlen, 64 / 8);
transfunc(ctx, m, 1);
for (i = 0; i < 8; i++)
{
ctx->hash[i] = bswap_64(ctx->hash[i]);
}
memcpy(result, ctx->hash, 64);
}
void sha512_hash(const unsigned char * data, uint_64t len, sha512_ctx *ctx)
{
uint_64t pos = ctx->count[0];
uint_64t total = ctx->count[1];
uint_8t* m = (uint_8t*) ctx->wbuf;
if (pos && pos + len >= 128)
{
memcpy(m + pos, data, (size_t) (128 - pos));
transfunc(ctx, m, 1);
len -= 128 - pos;
total += (128 - pos) * 8;
data += 128 - pos;
pos = 0;
}
if (len >= 128)
{
uint_64t blocks = len / 128;
uint_64t bytes = blocks * 128;
transfunc(ctx, (void*)data, blocks);
len -= bytes;
total += (bytes)* 8;
data += bytes;
}
memcpy(m+pos, data, (size_t) (len));
pos += len;
total += len * 8;
ctx->count[0] = pos;
ctx->count[1] = total;
}
void sha512(unsigned char * result, const unsigned char* source, uint_64t sourceLen)
{
sha512_ctx ctx;
sha512_begin(&ctx);
sha512_hash(source, sourceLen, &ctx);
sha512_end(result, &ctx);
}
/////////////////////////////
#ifndef NO_OPTIMIZED_VERSIONS
#if defined(__cplusplus)
extern "C"
{
#endif
#if CRYPTOPP_BOOL_X64
void sha256_sse4(void *input_data, uint_32t digest[8], uint_64t num_blks);
void sha256_rorx(void *input_data, uint_32t digest[8], uint_64t num_blks);
void sha256_avx(void *input_data, uint_32t digest[8], uint_64t num_blks);
#if CRYPTOPP_SHANI_AVAILABLE
void sha256_intel(void *input_data, uint_32t digest[8], uint_64t num_blks);
#endif
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
void VC_CDECL sha256_compress_nayuki(uint_32t state[8], const uint_8t block[64]);
#endif
#if defined(__cplusplus)
}
#endif
#endif
CRYPTOPP_ALIGN_DATA(16) static const uint_32t SHA256_K[64] CRYPTOPP_SECTION_ALIGN16 = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
#if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE))
#ifdef _MSC_VER
# pragma warning(disable: 4100 4731)
#endif
static void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(uint_32t *state, const uint_32t *data, size_t len)
{
#define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ
#define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4]
#define G(i) H(i+1)
#define F(i) H(i+2)
#define E(i) H(i+3)
#define D(i) H(i+4)
#define C(i) H(i+5)
#define B(i) H(i+6)
#define A(i) H(i+7)
#define Wt(i) BASE+8*4+ASM_MOD(1024+15-(i),16)*4
#define Wt_2(i) Wt((i)-2)
#define Wt_15(i) Wt((i)-15)
#define Wt_7(i) Wt((i)-7)
#define K_END [BASE+8*4+16*4+0*WORD_SZ]
#define STATE_SAVE [BASE+8*4+16*4+1*WORD_SZ]
#define DATA_SAVE [BASE+8*4+16*4+2*WORD_SZ]
#define DATA_END [BASE+8*4+16*4+3*WORD_SZ]
#define Kt(i) WORD_REG(si)+(i)*4
#if CRYPTOPP_BOOL_X32
#define BASE esp+8
#elif CRYPTOPP_BOOL_X86
#define BASE esp+4
#elif defined(__GNUC__)
#define BASE r8
#else
#define BASE rsp
#endif
#define RA0(i, edx, edi) \
AS2( add edx, [Kt(i)] )\
AS2( add edx, [Wt(i)] )\
AS2( add edx, H(i) )\
#define RA1(i, edx, edi)
#define RB0(i, edx, edi)
#define RB1(i, edx, edi) \
AS2( mov AS_REG_7d, [Wt_2(i)] )\
AS2( mov edi, [Wt_15(i)])\
AS2( mov ebx, AS_REG_7d )\
AS2( shr AS_REG_7d, 10 )\
AS2( ror ebx, 17 )\
AS2( xor AS_REG_7d, ebx )\
AS2( ror ebx, 2 )\
AS2( xor ebx, AS_REG_7d )/* s1(W_t-2) */\
AS2( add ebx, [Wt_7(i)])\
AS2( mov AS_REG_7d, edi )\
AS2( shr AS_REG_7d, 3 )\
AS2( ror edi, 7 )\
AS2( add ebx, [Wt(i)])/* s1(W_t-2) + W_t-7 + W_t-16 */\
AS2( xor AS_REG_7d, edi )\
AS2( add edx, [Kt(i)])\
AS2( ror edi, 11 )\
AS2( add edx, H(i) )\
AS2( xor AS_REG_7d, edi )/* s0(W_t-15) */\
AS2( add AS_REG_7d, ebx )/* W_t = s1(W_t-2) + W_t-7 + s0(W_t-15) W_t-16*/\
AS2( mov [Wt(i)], AS_REG_7d)\
AS2( add edx, AS_REG_7d )\
#define ROUND(i, r, eax, ecx, edi, edx)\
/* in: edi = E */\
/* unused: eax, ecx, temp: ebx, AS_REG_7d, out: edx = T1 */\
AS2( mov edx, F(i) )\
AS2( xor edx, G(i) )\
AS2( and edx, edi )\
AS2( xor edx, G(i) )/* Ch(E,F,G) = (G^(E&(F^G))) */\
AS2( mov AS_REG_7d, edi )\
AS2( ror edi, 6 )\
AS2( ror AS_REG_7d, 25 )\
RA##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\
AS2( xor AS_REG_7d, edi )\
AS2( ror edi, 5 )\
AS2( xor AS_REG_7d, edi )/* S1(E) */\
AS2( add edx, AS_REG_7d )/* T1 = S1(E) + Ch(E,F,G) + H + Wt + Kt */\
RB##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\
/* in: ecx = A, eax = B^C, edx = T1 */\
/* unused: edx, temp: ebx, AS_REG_7d, out: eax = A, ecx = B^C, edx = E */\
AS2( mov ebx, ecx )\
AS2( xor ecx, B(i) )/* A^B */\
AS2( and eax, ecx )\
AS2( xor eax, B(i) )/* Maj(A,B,C) = B^((A^B)&(B^C) */\
AS2( mov AS_REG_7d, ebx )\
AS2( ror ebx, 2 )\
AS2( add eax, edx )/* T1 + Maj(A,B,C) */\
AS2( add edx, D(i) )\
AS2( mov D(i), edx )\
AS2( ror AS_REG_7d, 22 )\
AS2( xor AS_REG_7d, ebx )\
AS2( ror ebx, 11 )\
AS2( xor AS_REG_7d, ebx )\
AS2( add eax, AS_REG_7d )/* T1 + S0(A) + Maj(A,B,C) */\
AS2( mov H(i), eax )\
// Unroll the use of CRYPTOPP_BOOL_X64 in assembler math. The GAS assembler on X32 (version 2.25)
// complains "Error: invalid operands (*ABS* and *UND* sections) for `*` and `-`"
#if CRYPTOPP_BOOL_X64
#define SWAP_COPY(i) \
AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\
AS1( bswap WORD_REG(bx))\
AS2( mov [Wt(i*2+1)], WORD_REG(bx))
#else // X86 and X32
#define SWAP_COPY(i) \
AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\
AS1( bswap WORD_REG(bx))\
AS2( mov [Wt(i)], WORD_REG(bx))
#endif
#if defined(__GNUC__)
#if CRYPTOPP_BOOL_X64
CRYPTOPP_ALIGN_DATA(16) uint8 workspace[LOCALS_SIZE] ;
#endif
__asm__ __volatile__
(
#if CRYPTOPP_BOOL_X64
"lea %4, %%r8;"
#endif
INTEL_NOPREFIX
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
#ifndef __GNUC__
AS2( mov edi, [len])
AS2( lea WORD_REG(si), [SHA256_K+48*4])
#endif
#if !defined(_MSC_VER) || (_MSC_VER < 1400)
AS_PUSH_IF86(bx)
#endif
AS_PUSH_IF86(bp)
AS2( mov ebx, esp)
AS2( and esp, -16)
AS2( sub WORD_REG(sp), LOCALS_SIZE)
AS_PUSH_IF86(bx)
#endif
AS2( mov STATE_SAVE, WORD_REG(cx))
AS2( mov DATA_SAVE, WORD_REG(dx))
AS2( lea WORD_REG(ax), [WORD_REG(di) + WORD_REG(dx)])
AS2( mov DATA_END, WORD_REG(ax))
AS2( mov K_END, WORD_REG(si))
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
AS2( test edi, 1)
ASJ( jnz, 2, f)
AS1( dec DWORD PTR K_END)
#endif
AS2( movdqu xmm0, XMMWORD_PTR [WORD_REG(cx)+0*16])
AS2( movdqu xmm1, XMMWORD_PTR [WORD_REG(cx)+1*16])
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASJ( jmp, 0, f)
#endif
ASL(2) // non-SSE2
AS2( mov esi, ecx)
AS2( lea edi, A(0))
AS2( mov ecx, 8)
ATT_NOPREFIX
AS1( rep movsd)
INTEL_NOPREFIX
AS2( mov esi, K_END)
ASJ( jmp, 3, f)
#endif
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASL(0)
AS2( movdqu E(0), xmm1)
AS2( movdqu A(0), xmm0)
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
ASL(3)
#endif
AS2( sub WORD_REG(si), 48*4)
SWAP_COPY(0) SWAP_COPY(1) SWAP_COPY(2) SWAP_COPY(3)
SWAP_COPY(4) SWAP_COPY(5) SWAP_COPY(6) SWAP_COPY(7)
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
SWAP_COPY(8) SWAP_COPY(9) SWAP_COPY(10) SWAP_COPY(11)
SWAP_COPY(12) SWAP_COPY(13) SWAP_COPY(14) SWAP_COPY(15)
#endif
AS2( mov edi, E(0)) // E
AS2( mov eax, B(0)) // B
AS2( xor eax, C(0)) // B^C
AS2( mov ecx, A(0)) // A
ROUND(0, 0, eax, ecx, edi, edx)
ROUND(1, 0, ecx, eax, edx, edi)
ROUND(2, 0, eax, ecx, edi, edx)
ROUND(3, 0, ecx, eax, edx, edi)
ROUND(4, 0, eax, ecx, edi, edx)
ROUND(5, 0, ecx, eax, edx, edi)
ROUND(6, 0, eax, ecx, edi, edx)
ROUND(7, 0, ecx, eax, edx, edi)
ROUND(8, 0, eax, ecx, edi, edx)
ROUND(9, 0, ecx, eax, edx, edi)
ROUND(10, 0, eax, ecx, edi, edx)
ROUND(11, 0, ecx, eax, edx, edi)
ROUND(12, 0, eax, ecx, edi, edx)
ROUND(13, 0, ecx, eax, edx, edi)
ROUND(14, 0, eax, ecx, edi, edx)
ROUND(15, 0, ecx, eax, edx, edi)
ASL(1)
AS2(add WORD_REG(si), 4*16)
ROUND(0, 1, eax, ecx, edi, edx)
ROUND(1, 1, ecx, eax, edx, edi)
ROUND(2, 1, eax, ecx, edi, edx)
ROUND(3, 1, ecx, eax, edx, edi)
ROUND(4, 1, eax, ecx, edi, edx)
ROUND(5, 1, ecx, eax, edx, edi)
ROUND(6, 1, eax, ecx, edi, edx)
ROUND(7, 1, ecx, eax, edx, edi)
ROUND(8, 1, eax, ecx, edi, edx)
ROUND(9, 1, ecx, eax, edx, edi)
ROUND(10, 1, eax, ecx, edi, edx)
ROUND(11, 1, ecx, eax, edx, edi)
ROUND(12, 1, eax, ecx, edi, edx)
ROUND(13, 1, ecx, eax, edx, edi)
ROUND(14, 1, eax, ecx, edi, edx)
ROUND(15, 1, ecx, eax, edx, edi)
AS2( cmp WORD_REG(si), K_END)
ATT_NOPREFIX
ASJ( jb, 1, b)
INTEL_NOPREFIX
AS2( mov WORD_REG(dx), DATA_SAVE)
AS2( add WORD_REG(dx), 64)
AS2( mov AS_REG_7, STATE_SAVE)
AS2( mov DATA_SAVE, WORD_REG(dx))
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
AS2( test DWORD PTR K_END, 1)
ASJ( jz, 4, f)
#endif
AS2( movdqu xmm1, XMMWORD_PTR [AS_REG_7+1*16])
AS2( movdqu xmm0, XMMWORD_PTR [AS_REG_7+0*16])
AS2( paddd xmm1, E(0))
AS2( paddd xmm0, A(0))
AS2( movdqu [AS_REG_7+1*16], xmm1)
AS2( movdqu [AS_REG_7+0*16], xmm0)
AS2( cmp WORD_REG(dx), DATA_END)
ATT_NOPREFIX
ASJ( jb, 0, b)
INTEL_NOPREFIX
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASJ( jmp, 5, f)
ASL(4) // non-SSE2
#endif
AS2( add [AS_REG_7+0*4], ecx) // A
AS2( add [AS_REG_7+4*4], edi) // E
AS2( mov eax, B(0))
AS2( mov ebx, C(0))
AS2( mov ecx, D(0))
AS2( add [AS_REG_7+1*4], eax)
AS2( add [AS_REG_7+2*4], ebx)
AS2( add [AS_REG_7+3*4], ecx)
AS2( mov eax, F(0))
AS2( mov ebx, G(0))
AS2( mov ecx, H(0))
AS2( add [AS_REG_7+5*4], eax)
AS2( add [AS_REG_7+6*4], ebx)
AS2( add [AS_REG_7+7*4], ecx)
AS2( mov ecx, AS_REG_7d)
AS2( cmp WORD_REG(dx), DATA_END)
ASJ( jb, 2, b)
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASL(5)
#endif
#endif
AS_POP_IF86(sp)
AS_POP_IF86(bp)
#if !defined(_MSC_VER) || (_MSC_VER < 1400)
AS_POP_IF86(bx)
#endif
#ifdef __GNUC__
ATT_PREFIX
:
: "c" (state), "d" (data), "S" (SHA256_K+48), "D" (len)
#if CRYPTOPP_BOOL_X64
, "m" (workspace[0])
#endif
: "memory", "cc", "%eax"
#if CRYPTOPP_BOOL_X64
, "%rbx", "%r8", "%r10"
#endif
);
#endif
}
#endif // (defined(CRYPTOPP_X86_ASM_AVAILABLE))
#undef sum0
#undef sum1
#undef sigma0
#undef sigma1
#define sum0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
#define sum1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
#define sigma0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
#define sigma1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
typedef void (*sha256transformFn)(sha256_ctx* ctx, void* m, uint_64t num_blks);
sha256transformFn sha256transfunc = NULL;
void StdSha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
uint_64t blk;
for (blk = 0; blk < num_blks; blk++)
{
uint_32t W[16];
uint_32t a,b,c,d,e,f,g,h;
uint_32t T1, T2;
int i;
#if defined (TC_WINDOWS_DRIVER) && defined (DEBUG)
int j;
#endif
for (i = 0; i < 64 / 4; i++)
{
W[i] = bswap_32((((const uint_32t*)(mp))[blk * 16 + i]));
}
a = ctx->hash[0];
b = ctx->hash[1];
c = ctx->hash[2];
d = ctx->hash[3];
e = ctx->hash[4];
f = ctx->hash[5];
g = ctx->hash[6];
h = ctx->hash[7];
for (i = 0; i <= 63; i+=16)
{
#if defined (TC_WINDOWS_DRIVER) && defined (DEBUG)
for (j = 0; j < 16; j++)
{
COMPRESS_ROUND(i, j, SHA256_K);
}
#else
COMPRESS_ROUND(i, 0, SHA256_K);
COMPRESS_ROUND(i, 1, SHA256_K);
COMPRESS_ROUND(i , 2, SHA256_K);
COMPRESS_ROUND(i, 3, SHA256_K);
COMPRESS_ROUND(i, 4, SHA256_K);
COMPRESS_ROUND(i, 5, SHA256_K);
COMPRESS_ROUND(i, 6, SHA256_K);
COMPRESS_ROUND(i, 7, SHA256_K);
COMPRESS_ROUND(i, 8, SHA256_K);
COMPRESS_ROUND(i, 9, SHA256_K);
COMPRESS_ROUND(i, 10, SHA256_K);
COMPRESS_ROUND(i, 11, SHA256_K);
COMPRESS_ROUND(i, 12, SHA256_K);
COMPRESS_ROUND(i, 13, SHA256_K);
COMPRESS_ROUND(i, 14, SHA256_K);
COMPRESS_ROUND(i, 15, SHA256_K);
#endif
}
ctx->hash[0] += a;
ctx->hash[1] += b;
ctx->hash[2] += c;
ctx->hash[3] += d;
ctx->hash[4] += e;
ctx->hash[5] += f;
ctx->hash[6] += g;
ctx->hash[7] += h;
}
}
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_BOOL_X64
#if CRYPTOPP_SHANI_AVAILABLE
void IntelSha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
sha256_intel(mp, ctx->hash, num_blks);
}
#endif
void Avx2Sha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
if (num_blks > 1)
sha256_rorx(mp, ctx->hash, num_blks);
else
sha256_sse4(mp, ctx->hash, num_blks);
}
void AvxSha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
if (num_blks > 1)
sha256_avx(mp, ctx->hash, num_blks);
else
sha256_sse4(mp, ctx->hash, num_blks);
}
void SSE4Sha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
sha256_sse4(mp, ctx->hash, num_blks);
}
#endif
#if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE))
void SSE2Sha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
X86_SHA256_HashBlocks(ctx->hash, (const uint_32t*)mp, (size_t)(num_blks * 64));
}
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
void Sha256AsmTransform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
uint_64t i;
for (i = 0; i < num_blks; i++)
sha256_compress_nayuki(ctx->hash, (uint_8t*)mp + i * 64);
}
#endif
#endif
void sha256_begin(sha256_ctx* ctx)
{
ctx->hash[0] = 0x6a09e667;
ctx->hash[1] = 0xbb67ae85;
ctx->hash[2] = 0x3c6ef372;
ctx->hash[3] = 0xa54ff53a;
ctx->hash[4] = 0x510e527f;
ctx->hash[5] = 0x9b05688c;
ctx->hash[6] = 0x1f83d9ab;
ctx->hash[7] = 0x5be0cd19;
ctx->count[0] = 0;
ctx->count[1] = 0;
if (!sha256transfunc)
{
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_BOOL_X64
#if CRYPTOPP_SHANI_AVAILABLE
if (HasSHA256())
sha256transfunc = IntelSha256Transform;
else
#endif
if (g_isIntel && HasSAVX2() && HasSBMI2())
sha256transfunc = Avx2Sha256Transform;
else if (g_isIntel && HasSAVX())
sha256transfunc = AvxSha256Transform;
else if (HasSSE41())
sha256transfunc = SSE4Sha256Transform;
else
#endif
#if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE))
if (HasSSE2 ())
sha256transfunc = SSE2Sha256Transform;
else
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
sha256transfunc = Sha256AsmTransform;
#else
sha256transfunc = StdSha256Transform;
#endif
#else
sha256transfunc = StdSha256Transform;
#endif
}
}
void sha256_end(unsigned char * result, sha256_ctx* ctx)
{
int i;
uint_64t mlen, pos = ctx->count[0];
uint_8t* m = (uint_8t*) ctx->wbuf;
m[pos++] = 0x80;
if (pos > 56)
{
memset(m + pos, 0, (size_t) (64 - pos));
sha256transfunc(ctx, m, 1);
pos = 0;
}
memset(m + pos, 0, (size_t) (56 - pos));
mlen = bswap_64((uint_64t) ctx->count[1]);
memcpy(m + (64 - 8), &mlen, 64 / 8);
sha256transfunc(ctx, m, 1);
for (i = 0; i < 8; i++)
{
ctx->hash[i] = bswap_32(ctx->hash[i]);
}
memcpy(result, ctx->hash, 32);
}
void sha256_hash(const unsigned char * data, uint_32t len, sha256_ctx *ctx)
{
uint_32t pos = ctx->count[0];
uint_32t total = ctx->count[1];
uint_8t* m = (uint_8t*) ctx->wbuf;
if (pos && pos + len >= 64)
{
memcpy(m + pos, data, 64 - pos);
sha256transfunc(ctx, m, 1);
len -= 64 - pos;
total += (64 - pos) * 8;
data += 64 - pos;
pos = 0;
}
if (len >= 64)
{
uint_32t blocks = len / 64;
uint_32t bytes = blocks * 64;
sha256transfunc(ctx, (void*)data, blocks);
len -= bytes;
total += (bytes)* 8;
data += bytes;
}
memcpy(m+pos, data, len);
pos += len;
total += len * 8;
ctx->count[0] = pos;
ctx->count[1] = total;
}
void sha256(unsigned char * result, const unsigned char* source, uint_32t sourceLen)
{
sha256_ctx ctx;
sha256_begin(&ctx);
sha256_hash(source, sourceLen, &ctx);
sha256_end(result, &ctx);
}
|