VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/Sha2Intel.c
blob: 943115bf96035fe2b2d04fdd5779fdc6e183e3f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*
* Support for SHA-256 x86 instrinsic
* Based on public domain code by Sean Gulley
*    (https://github.com/mitls/hacl-star/tree/master/experimental/hash)
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

/* November 10th 2024: Modified for VeraCrypt */

#include "Sha2.h"
#include "Common/Endian.h"
#include "cpu.h"
#include "misc.h"

#if defined(_UEFI) || defined(CRYPTOPP_DISABLE_ASM)
#define NO_OPTIMIZED_VERSIONS
#endif

#ifndef NO_OPTIMIZED_VERSIONS

#if CRYPTOPP_SHANI_AVAILABLE

#ifndef _MSC_VER
#include <signal.h>
#include <setjmp.h>

typedef void (*SigHandler)(int);

static jmp_buf s_jmpNoSHA;
static void SigIllHandlerSHA(int p)
{
	longjmp(s_jmpNoSHA, 1);
}
#endif

int TrySHA256()
{
    volatile int result = 0;
#ifdef _MSC_VER
    __try
#else
    SigHandler oldHandler = signal(SIGILL, SigIllHandlerSHA);
    if (oldHandler == SIG_ERR)
        return 0;
    if (setjmp(s_jmpNoSHA))
        result = 0;
    else
#endif
    {
        // Known input message block
        __m128i msg0 = _mm_setr_epi32(0x12345678, 0x9ABCDEF0, 0x87654321, 0x0FEDCBA9);
        __m128i msg1 = _mm_setr_epi32(0x11111111, 0x22222222, 0x33333333, 0x44444444);
        
        // SHA256 message schedule update
        __m128i tmp = _mm_sha256msg1_epu32(msg0, msg1);
        
        // Verify result - these values were pre-computed for the given input
#ifdef _MSC_VER
        if (tmp.m128i_u32[0] == 0xD8131B44 &&
            tmp.m128i_u32[1] == 0x9DE6E22B &&
            tmp.m128i_u32[2] == 0xA86D643A &&
            tmp.m128i_u32[3] == 0x74320FED)
#else
        if (((uint32_t*)(&tmp))[0] == 0xD8131B44 &&
            ((uint32_t*)(&tmp))[1] == 0x9DE6E22B &&
            ((uint32_t*)(&tmp))[2] == 0xA86D643A &&
            ((uint32_t*)(&tmp))[3] == 0x74320FED)
#endif
            result = 1;
    }
#ifdef _MSC_VER
    __except (EXCEPTION_EXECUTE_HANDLER)
    {
        // ignore error if SHA instructions not supported
    }
#else
    signal(SIGILL, oldHandler);
#endif

    return result;
}

//
void sha256_intel(void *mp, uint_32t state[8], uint_64t num_blks) 
{
    // Constants table - align for better performance
    CRYPTOPP_ALIGN_DATA(64) 
    static const uint_32t K[64] = {
        0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
        0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
        0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
        0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
        0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
        0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
        0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
        0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
    };

    const __m128i* K_mm = (const __m128i*)K;
    const __m128i* input_mm = (const __m128i*)mp;
    
    // Create byte shuffle mask for big-endian to little-endian conversion
    const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0b, 0x0405060700010203);

    // Load initial values
    __m128i STATE0 = _mm_loadu_si128((__m128i*)&state[0]);
    __m128i STATE1 = _mm_loadu_si128((__m128i*)&state[4]);

    // Adjust byte ordering
    STATE0 = _mm_shuffle_epi32(STATE0, 0xB1);  // CDAB
    STATE1 = _mm_shuffle_epi32(STATE1, 0x1B);  // EFGH

    __m128i TMP = _mm_alignr_epi8(STATE0, STATE1, 8);  // ABEF
    STATE1 = _mm_blend_epi16(STATE1, STATE0, 0xF0);    // CDGH
    STATE0 = TMP;

    while(num_blks > 0) {
        // Save current state
        const __m128i ABEF_SAVE = STATE0;
        const __m128i CDGH_SAVE = STATE1;

        __m128i MSG;

        __m128i TMSG0 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm), MASK);
        __m128i TMSG1 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 1), MASK);
        __m128i TMSG2 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 2), MASK);
        __m128i TMSG3 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 3), MASK);

        // Rounds 0-3
        MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        // Rounds 4-7
        MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 1));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);

        // Rounds 8-11
        MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 2));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);

        // Rounds 12-15
        MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 3));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
        TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
        TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);

        // Rounds 16-19
        MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 4));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
        TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
        TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);

        // Rounds 20-23
        MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 5));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
        TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
        TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);

        // Rounds 24-27
        MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 6));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
        TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
        TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);

        // Rounds 28-31
        MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 7));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
        TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
        TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);

        // Rounds 32-35
        MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 8));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
        TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
        TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);

        // Rounds 36-39
        MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 9));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
        TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
        TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);

        // Rounds 40-43
        MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 10));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
        TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
        TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);

        // Rounds 44-47
        MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 11));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
        TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
        TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);

        // Rounds 48-51
        MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 12));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
        TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
        TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);

        // Rounds 52-55
        MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 13));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
        TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);

        // Rounds 56-59
        MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 14));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
        TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);

        // Rounds 60-63
        MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 15));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));

        // Add values back to state
        STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
        STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);

        input_mm += 4;
        num_blks--;
    }

    // Shuffle state back to correct order
    STATE0 = _mm_shuffle_epi32(STATE0, 0x1B);  // FEBA
    STATE1 = _mm_shuffle_epi32(STATE1, 0xB1);  // DCHG

    // Save state
    _mm_storeu_si128((__m128i*)&state[0], _mm_blend_epi16(STATE0, STATE1, 0xF0));  // DCBA
    _mm_storeu_si128((__m128i*)&state[4], _mm_alignr_epi8(STATE1, STATE0, 8));     // HGFE
}

#endif
#endif