VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Volume/VolumeException.h
blob: 8185fab9f908b4a77ea2356e2d9c4678f108427d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#ifndef TC_HEADER_Volume_VolumeExceptions
#define TC_HEADER_Volume_VolumeExceptions

#include "Platform/Platform.h"

namespace VeraCrypt
{
	struct VolumeException : public Exception
	{
	protected:
		VolumeException ();
		VolumeException (const string &message);
		VolumeException (const string &message, const wstring &subject);
	};

#define TC_EXCEPTION(NAME) TC_EXCEPTION_DECL(NAME,VolumeException)

#undef TC_EXCEPTION_SET
#define TC_EXCEPTION_SET \
	TC_EXCEPTION (HigherVersionRequired); \
	TC_EXCEPTION (KeyfilePathEmpty); \
	TC_EXCEPTION (MissingVolumeData); \
	TC_EXCEPTION (MountedVolumeInUse); \
	TC_EXCEPTION (UnsupportedSectorSize); \
	TC_EXCEPTION (VolumeEncryptionNotCompleted); \
	TC_EXCEPTION (VolumeHostInUse); \
	TC_EXCEPTION (VolumeProtected); \
	TC_EXCEPTION (VolumeReadOnly);

	TC_EXCEPTION_SET;

#undef TC_EXCEPTION
}

#endif // TC_HEADER_Volume_VolumeExceptions
0' href='#n270'>270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
/*
  zip_source_buffer.c -- create zip data source from buffer
  Copyright (C) 1999-2018 Dieter Baron and Thomas Klausner

  This file is part of libzip, a library to manipulate ZIP archives.
  The authors can be contacted at <libzip@nih.at>

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:
  1. Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in
     the documentation and/or other materials provided with the
     distribution.
  3. The names of the authors may not be used to endorse or promote
     products derived from this software without specific prior
     written permission.

  THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS
  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
  GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
  OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
  IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include <stdlib.h>
#include <string.h>

#include "zipint.h"

#ifndef WRITE_FRAGMENT_SIZE
#define WRITE_FRAGMENT_SIZE (64 * 1024)
#endif

struct buffer {
    zip_buffer_fragment_t *fragments; /* fragments */
    zip_uint64_t *fragment_offsets;   /* offset of each fragment from start of buffer, nfragments+1 entries */
    zip_uint64_t nfragments;          /* number of allocated fragments */
    zip_uint64_t fragments_capacity;  /* size of fragments (number of pointers) */

    zip_uint64_t first_owned_fragment; /* first fragment to free data from */

    zip_uint64_t shared_fragments; /* number of shared fragments */
    struct buffer *shared_buffer;  /* buffer fragments are shared with */
    zip_uint64_t size;             /* size of buffer */

    zip_uint64_t offset;           /* current offset in buffer */
    zip_uint64_t current_fragment; /* fragment current offset is in */
};

typedef struct buffer buffer_t;

struct read_data {
    zip_error_t error;
    time_t mtime;
    buffer_t *in;
    buffer_t *out;
};

#define buffer_capacity(buffer) ((buffer)->fragment_offsets[(buffer)->nfragments])
#define buffer_size(buffer) ((buffer)->size)

static buffer_t *buffer_clone(buffer_t *buffer, zip_uint64_t length, zip_error_t *error);
static zip_uint64_t buffer_find_fragment(const buffer_t *buffer, zip_uint64_t offset);
static void buffer_free(buffer_t *buffer);
static bool buffer_grow_fragments(buffer_t *buffer, zip_uint64_t capacity, zip_error_t *error);
static buffer_t *buffer_new(const zip_buffer_fragment_t *fragments, zip_uint64_t nfragments, int free_data, zip_error_t *error);
static zip_int64_t buffer_read(buffer_t *buffer, zip_uint8_t *data, zip_uint64_t length);
static int buffer_seek(buffer_t *buffer, void *data, zip_uint64_t len, zip_error_t *error);
static zip_int64_t buffer_write(buffer_t *buffer, const zip_uint8_t *data, zip_uint64_t length, zip_error_t *);

static zip_int64_t read_data(void *, void *, zip_uint64_t, zip_source_cmd_t);


ZIP_EXTERN zip_source_t *
zip_source_buffer(zip_t *za, const void *data, zip_uint64_t len, int freep) {
    if (za == NULL)
	return NULL;

    return zip_source_buffer_create(data, len, freep, &za->error);
}


ZIP_EXTERN zip_source_t *
zip_source_buffer_create(const void *data, zip_uint64_t len, int freep, zip_error_t *error) {
    zip_buffer_fragment_t fragment;

    if (data == NULL && len > 0) {
	zip_error_set(error, ZIP_ER_INVAL, 0);
	return NULL;
    }

    fragment.data = (zip_uint8_t *)data;
    fragment.length = len;

    return zip_source_buffer_fragment_create(&fragment, 1, freep, error);
}


ZIP_EXTERN zip_source_t *
zip_source_buffer_fragment(zip_t *za, const zip_buffer_fragment_t *fragments, zip_uint64_t nfragments, int freep) {
    if (za == NULL) {
	return NULL;
    }

    return zip_source_buffer_fragment_create(fragments, nfragments, freep, &za->error);
}


ZIP_EXTERN zip_source_t *
zip_source_buffer_fragment_create(const zip_buffer_fragment_t *fragments, zip_uint64_t nfragments, int freep, zip_error_t *error) {
    struct read_data *ctx;
    zip_source_t *zs;
    buffer_t *buffer;

    if (fragments == NULL && nfragments > 0) {
	zip_error_set(error, ZIP_ER_INVAL, 0);
	return NULL;
    }

    if ((buffer = buffer_new(fragments, nfragments, freep, error)) == NULL) {
	return NULL;
    }

    if ((ctx = (struct read_data *)malloc(sizeof(*ctx))) == NULL) {
	zip_error_set(error, ZIP_ER_MEMORY, 0);
	buffer_free(buffer);
	return NULL;
    }

    ctx->in = buffer;
    ctx->out = NULL;
    ctx->mtime = time(NULL);
    zip_error_init(&ctx->error);

    if ((zs = zip_source_function_create(read_data, ctx, error)) == NULL) {
	buffer_free(ctx->in);
	free(ctx);
	return NULL;
    }

    return zs;
}


static zip_int64_t
read_data(void *state, void *data, zip_uint64_t len, zip_source_cmd_t cmd) {
    struct read_data *ctx = (struct read_data *)state;

    switch (cmd) {
    case ZIP_SOURCE_BEGIN_WRITE:
	if ((ctx->out = buffer_new(NULL, 0, 0, &ctx->error)) == NULL) {
	    return -1;
	}
	ctx->out->offset = 0;
	ctx->out->current_fragment = 0;
	return 0;

    case ZIP_SOURCE_BEGIN_WRITE_CLONING:
	if ((ctx->out = buffer_clone(ctx->in, len, &ctx->error)) == NULL) {
	    return -1;
	}
	ctx->out->offset = len;
	ctx->out->current_fragment = ctx->out->nfragments;
	return 0;

    case ZIP_SOURCE_CLOSE:
	return 0;

    case ZIP_SOURCE_COMMIT_WRITE:
	buffer_free(ctx->in);
	ctx->in = ctx->out;
	ctx->out = NULL;
	return 0;

    case ZIP_SOURCE_ERROR:
	return zip_error_to_data(&ctx->error, data, len);

    case ZIP_SOURCE_FREE:
	buffer_free(ctx->in);
	buffer_free(ctx->out);
	free(ctx);
	return 0;

    case ZIP_SOURCE_OPEN:
	ctx->in->offset = 0;
	ctx->in->current_fragment = 0;
	return 0;

    case ZIP_SOURCE_READ:
	if (len > ZIP_INT64_MAX) {
	    zip_error_set(&ctx->error, ZIP_ER_INVAL, 0);
	    return -1;
	}
	return buffer_read(ctx->in, data, len);

    case ZIP_SOURCE_REMOVE: {
	buffer_t *empty = buffer_new(NULL, 0, 0, &ctx->error);
	if (empty == NULL) {
	    return -1;
	}

	buffer_free(ctx->in);
	ctx->in = empty;
	return 0;
    }

    case ZIP_SOURCE_ROLLBACK_WRITE:
	buffer_free(ctx->out);
	ctx->out = NULL;
	return 0;

    case ZIP_SOURCE_SEEK:
	return buffer_seek(ctx->in, data, len, &ctx->error);

    case ZIP_SOURCE_SEEK_WRITE:
	return buffer_seek(ctx->out, data, len, &ctx->error);

    case ZIP_SOURCE_STAT: {
	zip_stat_t *st;

	if (len < sizeof(*st)) {
	    zip_error_set(&ctx->error, ZIP_ER_INVAL, 0);
	    return -1;
	}

	st = (zip_stat_t *)data;

	zip_stat_init(st);
	st->mtime = ctx->mtime;
	st->size = ctx->in->size;
	st->comp_size = st->size;
	st->comp_method = ZIP_CM_STORE;
	st->encryption_method = ZIP_EM_NONE;
	st->valid = ZIP_STAT_MTIME | ZIP_STAT_SIZE | ZIP_STAT_COMP_SIZE | ZIP_STAT_COMP_METHOD | ZIP_STAT_ENCRYPTION_METHOD;

	return sizeof(*st);
    }

    case ZIP_SOURCE_SUPPORTS:
	return zip_source_make_command_bitmap(ZIP_SOURCE_OPEN, ZIP_SOURCE_READ, ZIP_SOURCE_CLOSE, ZIP_SOURCE_STAT, ZIP_SOURCE_ERROR, ZIP_SOURCE_FREE, ZIP_SOURCE_SEEK, ZIP_SOURCE_TELL, ZIP_SOURCE_BEGIN_WRITE, ZIP_SOURCE_BEGIN_WRITE_CLONING, ZIP_SOURCE_COMMIT_WRITE, ZIP_SOURCE_REMOVE, ZIP_SOURCE_ROLLBACK_WRITE, ZIP_SOURCE_SEEK_WRITE, ZIP_SOURCE_TELL_WRITE, ZIP_SOURCE_WRITE, -1);

    case ZIP_SOURCE_TELL:
	if (ctx->in->offset > ZIP_INT64_MAX) {
	    zip_error_set(&ctx->error, ZIP_ER_TELL, EOVERFLOW);
	    return -1;
	}
	return (zip_int64_t)ctx->in->offset;


    case ZIP_SOURCE_TELL_WRITE:
	if (ctx->out->offset > ZIP_INT64_MAX) {
	    zip_error_set(&ctx->error, ZIP_ER_TELL, EOVERFLOW);
	    return -1;
	}
	return (zip_int64_t)ctx->out->offset;

    case ZIP_SOURCE_WRITE:
	if (len > ZIP_INT64_MAX) {
	    zip_error_set(&ctx->error, ZIP_ER_INVAL, 0);
	    return -1;
	}
	return buffer_write(ctx->out, data, len, &ctx->error);

    default:
	zip_error_set(&ctx->error, ZIP_ER_OPNOTSUPP, 0);
	return -1;
    }
}


static buffer_t *
buffer_clone(buffer_t *buffer, zip_uint64_t offset, zip_error_t *error) {
    zip_uint64_t fragment, fragment_offset, waste;
    buffer_t *clone;

    if (offset == 0) {
	return buffer_new(NULL, 0, 1, error);
    }

    if (offset > buffer->size) {
	zip_error_set(error, ZIP_ER_INVAL, 0);
	return NULL;
    }
    if (buffer->shared_buffer != NULL) {
	zip_error_set(error, ZIP_ER_INUSE, 0);
	return NULL;
    }

    fragment = buffer_find_fragment(buffer, offset);
    fragment_offset = offset - buffer->fragment_offsets[fragment];

    if (fragment_offset == 0) {
	fragment--;
	fragment_offset = buffer->fragments[fragment].length;
    }

    waste = buffer->fragments[fragment].length - fragment_offset;
    if (waste > offset) {
	zip_error_set(error, ZIP_ER_OPNOTSUPP, 0);
	return NULL;
    }

    if ((clone = buffer_new(buffer->fragments, fragment + 1, 0, error)) == NULL) {
	return NULL;
    }

#ifndef __clang_analyzer__
    /* clone->fragments can't be null, since it was created with at least one fragment */
    clone->fragments[clone->nfragments - 1].length = fragment_offset;
#endif
    clone->fragment_offsets[clone->nfragments] = offset;
    clone->size = offset;

    clone->first_owned_fragment = ZIP_MIN(buffer->first_owned_fragment, clone->nfragments - 1);

    buffer->shared_buffer = clone;
    clone->shared_buffer = buffer;
    buffer->shared_fragments = clone->nfragments;
    clone->shared_fragments = fragment + 1;

    return clone;
}


static zip_uint64_t
buffer_find_fragment(const buffer_t *buffer, zip_uint64_t offset) {
    zip_uint64_t low, high, mid;

    low = 0;
    high = buffer->nfragments - 1;

    while (low < high) {
	mid = (high - low) / 2 + low;
	if (buffer->fragment_offsets[mid] > offset) {
	    high = mid - 1;
	}
	else if (mid == buffer->nfragments || buffer->fragment_offsets[mid + 1] > offset) {
	    return mid;
	}
	else {
	    low = mid + 1;
	}
    }

    return low;
}


static void
buffer_free(buffer_t *buffer) {
    zip_uint64_t i;

    if (buffer == NULL) {
	return;
    }

    if (buffer->shared_buffer != NULL) {
	buffer->shared_buffer->shared_buffer = NULL;
	buffer->shared_buffer->shared_fragments = 0;

	buffer->first_owned_fragment = ZIP_MAX(buffer->first_owned_fragment, buffer->shared_fragments);
    }

    for (i = buffer->first_owned_fragment; i < buffer->nfragments; i++) {
	free(buffer->fragments[i].data);
    }
    free(buffer->fragments);
    free(buffer->fragment_offsets);
    free(buffer);
}


static bool
buffer_grow_fragments(buffer_t *buffer, zip_uint64_t capacity, zip_error_t *error) {
    zip_buffer_fragment_t *fragments;
    zip_uint64_t *offsets;

    if (capacity < buffer->fragments_capacity) {
	return true;
    }

    if ((fragments = realloc(buffer->fragments, sizeof(buffer->fragments[0]) * capacity)) == NULL) {
	zip_error_set(error, ZIP_ER_MEMORY, 0);
	return false;
    }
    buffer->fragments = fragments;
    if ((offsets = realloc(buffer->fragment_offsets, sizeof(buffer->fragment_offsets[0]) * (capacity + 1))) == NULL) {
	zip_error_set(error, ZIP_ER_MEMORY, 0);
	return false;
    }
    buffer->fragment_offsets = offsets;
    buffer->fragments_capacity = capacity;

    return true;
}


static buffer_t *
buffer_new(const zip_buffer_fragment_t *fragments, zip_uint64_t nfragments, int free_data, zip_error_t *error) {
    buffer_t *buffer;

    if ((buffer = malloc(sizeof(*buffer))) == NULL) {
	return NULL;
    }

    buffer->offset = 0;
    buffer->first_owned_fragment = 0;
    buffer->size = 0;
    buffer->fragments = NULL;
    buffer->fragment_offsets = NULL;
    buffer->nfragments = 0;
    buffer->fragments_capacity = 0;
    buffer->shared_buffer = NULL;
    buffer->shared_fragments = 0;

    if (nfragments == 0) {
	if ((buffer->fragment_offsets = malloc(sizeof(buffer->fragment_offsets[0]))) == NULL) {
	    free(buffer);
	    zip_error_set(error, ZIP_ER_MEMORY, 0);
	    return NULL;
	}
	buffer->fragment_offsets[0] = 0;
    }
    else {
	zip_uint64_t i, j, offset;

	if (!buffer_grow_fragments(buffer, nfragments, NULL)) {
	    zip_error_set(error, ZIP_ER_MEMORY, 0);
	    buffer_free(buffer);
	    return NULL;
	}

	offset = 0;
	for (i = 0, j = 0; i < nfragments; i++) {
	    if (fragments[i].length == 0) {
		continue;
	    }
	    if (fragments[i].data == NULL) {
		zip_error_set(error, ZIP_ER_INVAL, 0);
		buffer_free(buffer);
		return NULL;
	    }
	    buffer->fragments[j].data = fragments[i].data;
	    buffer->fragments[j].length = fragments[i].length;
	    buffer->fragment_offsets[i] = offset;
	    offset += fragments[i].length;
	    j++;
	}
	buffer->nfragments = j;
	buffer->first_owned_fragment = free_data ? 0 : buffer->nfragments;
	buffer->fragment_offsets[nfragments] = offset;
	buffer->size = offset;
    }

    return buffer;
}

static zip_int64_t
buffer_read(buffer_t *buffer, zip_uint8_t *data, zip_uint64_t length) {
    zip_uint64_t n, i, fragment_offset;

    length = ZIP_MIN(length, buffer->size - buffer->offset);

    if (length == 0) {
	return 0;
    }
    if (length > ZIP_INT64_MAX) {
	return -1;
    }

    i = buffer->current_fragment;
    fragment_offset = buffer->offset - buffer->fragment_offsets[i];
    n = 0;
    while (n < length) {
	zip_uint64_t left = ZIP_MIN(length - n, buffer->fragments[i].length - fragment_offset);

	memcpy(data + n, buffer->fragments[i].data + fragment_offset, left);

	if (left == buffer->fragments[i].length - fragment_offset) {
	    i++;
	}
	n += left;
	fragment_offset = 0;
    }

    buffer->offset += n;
    buffer->current_fragment = i;
    return (zip_int64_t)n;
}


static int
buffer_seek(buffer_t *buffer, void *data, zip_uint64_t len, zip_error_t *error) {
    zip_int64_t new_offset = zip_source_seek_compute_offset(buffer->offset, buffer->size, data, len, error);

    if (new_offset < 0) {
	return -1;
    }

    buffer->offset = (zip_uint64_t)new_offset;
    buffer->current_fragment = buffer_find_fragment(buffer, buffer->offset);
    return 0;
}


static zip_int64_t
buffer_write(buffer_t *buffer, const zip_uint8_t *data, zip_uint64_t length, zip_error_t *error) {
    zip_uint64_t n, i, fragment_offset, capacity;

    if (buffer->offset + length + WRITE_FRAGMENT_SIZE - 1 < length) {
	zip_error_set(error, ZIP_ER_INVAL, 0);
	return -1;
    }

    /* grow buffer if needed */
    capacity = buffer_capacity(buffer);
    if (buffer->offset + length > capacity) {
	zip_uint64_t needed_fragments = buffer->nfragments + (length - (capacity - buffer->offset) + WRITE_FRAGMENT_SIZE - 1) / WRITE_FRAGMENT_SIZE;

	if (needed_fragments > buffer->fragments_capacity) {
	    zip_uint64_t new_capacity = buffer->fragments_capacity;

	    if (new_capacity == 0) {
		new_capacity = 16;
	    }
	    while (new_capacity < needed_fragments) {
		new_capacity *= 2;
	    }

	    if (!buffer_grow_fragments(buffer, new_capacity, error)) {
		zip_error_set(error, ZIP_ER_MEMORY, 0);
		return -1;
	    }
	}

	while (buffer->nfragments < needed_fragments) {
	    if ((buffer->fragments[buffer->nfragments].data = malloc(WRITE_FRAGMENT_SIZE)) == NULL) {
		zip_error_set(error, ZIP_ER_MEMORY, 0);
		return -1;
	    }
	    buffer->fragments[buffer->nfragments].length = WRITE_FRAGMENT_SIZE;
	    buffer->nfragments++;
	    capacity += WRITE_FRAGMENT_SIZE;
	    buffer->fragment_offsets[buffer->nfragments] = capacity;
	}
    }

    i = buffer->current_fragment;
    fragment_offset = buffer->offset - buffer->fragment_offsets[i];
    n = 0;
    while (n < length) {
	zip_uint64_t left = ZIP_MIN(length - n, buffer->fragments[i].length - fragment_offset);

	memcpy(buffer->fragments[i].data + fragment_offset, data + n, left);

	if (left == buffer->fragments[i].length - fragment_offset) {
	    i++;
	}
	n += left;
	fragment_offset = 0;
    }

    buffer->offset += n;
    buffer->current_fragment = i;
    if (buffer->offset > buffer->size) {
	buffer->size = buffer->offset;
    }

    return (zip_int64_t)n;
}