VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/Sha2Intel.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/Crypto/Sha2Intel.c')
-rw-r--r--src/Crypto/Sha2Intel.c278
1 files changed, 278 insertions, 0 deletions
diff --git a/src/Crypto/Sha2Intel.c b/src/Crypto/Sha2Intel.c
new file mode 100644
index 00000000..943115bf
--- /dev/null
+++ b/src/Crypto/Sha2Intel.c
@@ -0,0 +1,278 @@
+/*
+* Support for SHA-256 x86 instrinsic
+* Based on public domain code by Sean Gulley
+* (https://github.com/mitls/hacl-star/tree/master/experimental/hash)
+*
+* Botan is released under the Simplified BSD License (see license.txt)
+*/
+
+/* November 10th 2024: Modified for VeraCrypt */
+
+#include "Sha2.h"
+#include "Common/Endian.h"
+#include "cpu.h"
+#include "misc.h"
+
+#if defined(_UEFI) || defined(CRYPTOPP_DISABLE_ASM)
+#define NO_OPTIMIZED_VERSIONS
+#endif
+
+#ifndef NO_OPTIMIZED_VERSIONS
+
+#if CRYPTOPP_SHANI_AVAILABLE
+
+#ifndef _MSC_VER
+#include <signal.h>
+#include <setjmp.h>
+
+typedef void (*SigHandler)(int);
+
+static jmp_buf s_jmpNoSHA;
+static void SigIllHandlerSHA(int p)
+{
+ longjmp(s_jmpNoSHA, 1);
+}
+#endif
+
+int TrySHA256()
+{
+ volatile int result = 0;
+#ifdef _MSC_VER
+ __try
+#else
+ SigHandler oldHandler = signal(SIGILL, SigIllHandlerSHA);
+ if (oldHandler == SIG_ERR)
+ return 0;
+ if (setjmp(s_jmpNoSHA))
+ result = 0;
+ else
+#endif
+ {
+ // Known input message block
+ __m128i msg0 = _mm_setr_epi32(0x12345678, 0x9ABCDEF0, 0x87654321, 0x0FEDCBA9);
+ __m128i msg1 = _mm_setr_epi32(0x11111111, 0x22222222, 0x33333333, 0x44444444);
+
+ // SHA256 message schedule update
+ __m128i tmp = _mm_sha256msg1_epu32(msg0, msg1);
+
+ // Verify result - these values were pre-computed for the given input
+#ifdef _MSC_VER
+ if (tmp.m128i_u32[0] == 0xD8131B44 &&
+ tmp.m128i_u32[1] == 0x9DE6E22B &&
+ tmp.m128i_u32[2] == 0xA86D643A &&
+ tmp.m128i_u32[3] == 0x74320FED)
+#else
+ if (((uint32_t*)(&tmp))[0] == 0xD8131B44 &&
+ ((uint32_t*)(&tmp))[1] == 0x9DE6E22B &&
+ ((uint32_t*)(&tmp))[2] == 0xA86D643A &&
+ ((uint32_t*)(&tmp))[3] == 0x74320FED)
+#endif
+ result = 1;
+ }
+#ifdef _MSC_VER
+ __except (EXCEPTION_EXECUTE_HANDLER)
+ {
+ // ignore error if SHA instructions not supported
+ }
+#else
+ signal(SIGILL, oldHandler);
+#endif
+
+ return result;
+}
+
+//
+void sha256_intel(void *mp, uint_32t state[8], uint_64t num_blks)
+{
+ // Constants table - align for better performance
+ CRYPTOPP_ALIGN_DATA(64)
+ static const uint_32t K[64] = {
+ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
+ 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
+ 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
+ 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
+ 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
+ 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
+ 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
+ 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
+ };
+
+ const __m128i* K_mm = (const __m128i*)K;
+ const __m128i* input_mm = (const __m128i*)mp;
+
+ // Create byte shuffle mask for big-endian to little-endian conversion
+ const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0b, 0x0405060700010203);
+
+ // Load initial values
+ __m128i STATE0 = _mm_loadu_si128((__m128i*)&state[0]);
+ __m128i STATE1 = _mm_loadu_si128((__m128i*)&state[4]);
+
+ // Adjust byte ordering
+ STATE0 = _mm_shuffle_epi32(STATE0, 0xB1); // CDAB
+ STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
+
+ __m128i TMP = _mm_alignr_epi8(STATE0, STATE1, 8); // ABEF
+ STATE1 = _mm_blend_epi16(STATE1, STATE0, 0xF0); // CDGH
+ STATE0 = TMP;
+
+ while(num_blks > 0) {
+ // Save current state
+ const __m128i ABEF_SAVE = STATE0;
+ const __m128i CDGH_SAVE = STATE1;
+
+ __m128i MSG;
+
+ __m128i TMSG0 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm), MASK);
+ __m128i TMSG1 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 1), MASK);
+ __m128i TMSG2 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 2), MASK);
+ __m128i TMSG3 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 3), MASK);
+
+ // Rounds 0-3
+ MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ // Rounds 4-7
+ MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 1));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
+
+ // Rounds 8-11
+ MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 2));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
+
+ // Rounds 12-15
+ MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 3));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
+ TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
+ TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
+
+ // Rounds 16-19
+ MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 4));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
+ TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
+ TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
+
+ // Rounds 20-23
+ MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 5));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
+ TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
+ TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
+
+ // Rounds 24-27
+ MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 6));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
+ TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
+ TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
+
+ // Rounds 28-31
+ MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 7));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
+ TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
+ TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
+
+ // Rounds 32-35
+ MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 8));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
+ TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
+ TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
+
+ // Rounds 36-39
+ MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 9));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
+ TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
+ TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
+
+ // Rounds 40-43
+ MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 10));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
+ TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
+ TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
+
+ // Rounds 44-47
+ MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 11));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
+ TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
+ TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
+
+ // Rounds 48-51
+ MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 12));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
+ TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
+ TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
+
+ // Rounds 52-55
+ MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 13));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
+ TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
+
+ // Rounds 56-59
+ MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 14));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
+ TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
+
+ // Rounds 60-63
+ MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 15));
+ STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
+ STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
+
+ // Add values back to state
+ STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
+ STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
+
+ input_mm += 4;
+ num_blks--;
+ }
+
+ // Shuffle state back to correct order
+ STATE0 = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
+ STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
+
+ // Save state
+ _mm_storeu_si128((__m128i*)&state[0], _mm_blend_epi16(STATE0, STATE1, 0xF0)); // DCBA
+ _mm_storeu_si128((__m128i*)&state[4], _mm_alignr_epi8(STATE1, STATE0, 8)); // HGFE
+}
+
+#endif
+#endif